EasyGas®

First ready-to-use gas tamponade

Quick and easy application through sterile, pre-filled system

Sterile gas

Safe usage because of precise, non-expanding mixture ratio

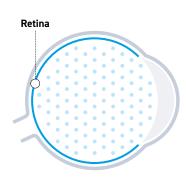
No mix-up of gases due to colour coding

Three gases for different tamponade durations

Reduced risk for hypertension or ischemia, because manual mixing is not required

Contains patient information card and patient wristband

Packaging units


H Syringe 40 ml, sterile

H G-80960 EasyGas® C2F6
Syringe 40 ml, sterile

H G-80970 EasyGas° C3F8
Syringe 40 ml, sterile

Fields of application

EasyGas $^{\circ}$ SF $_{\delta}$, EasyGas $^{\circ}$ C $_{2}$ F $_{\delta}$ and EasyGas $^{\circ}$ C $_{3}$ F $_{8}$ are the first ready-to-use gas tamponades. The sterile, pre-filled, ready-to-use system offers a quick and easy application of the tamponades. EasyGas $^{\circ}$ is used as long-term tamponade after operative treatment of severe retinal detachment.

	EasyGas® SF6	EasyGas® C2F6	EasyGas® C3F8
Effective tamponade time [days]	6	15	30
Retention time / longevity [weeks]	1-2	4 – 5	6-8
Non-expansive gas concentration* [%]	20	16	12

Composition and properties

	EasyGas® SF6	EasyGas® C2F6	EasyGas® C3F8
Composition	20 % SF _e 80 % synthetic air	16 % C ₂ F ₆ 84 % synthetic air	$12 \% C_3F_8$ 88 % synthetic air
Purity of gas	» 99.99 %	» 99.99 %	» 99.99 %

References

Choi M, Hong S, Yun C, Kim SW. Objective analysis of perfluoropropane tamponade area after pars plana vitrectomy using ultra-widefield fundus stereographic projection images. Sci Rep. 2020;10:18268 Hecht I, Mimouni M, Blumenthal EZ, Barak Y. Sulfur hexafluoride (SF6) versus perfluoropropane (C3F8) in the intraoperative management of macular holes: A systematic review and meta-analysis. J Ophthalmol. 2019;1820850

Kanclerz P and Grzybowski A. Case series of inappropriate concentration of intraocular sulfur hexafluoride. Case Rep Ophthalmol. 2018;9:405-410

Kontos A, Tee J, Stuart A, Shalchi Z, Williamson TH. Duration of intraocular gases following vitreoretinal surgery. Graefes Arch Clin Exp Ophthalmol. 2017;255:231-236

Mohamed S and Lai T. Intraocular gas in vitreoretinal surgery. HKJ Ophthalmol. 2010;14:8-13